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Abstract. The form of the wavefunction $ for a semiclassical regular quantum state 
(associated with classical motion on an N-dimensional torus in the 2N-dimensional phase 
space) is very different from the form of + for an irregular state (associated with stochastic 
classical motion on all or part of the (2N- 1)-dimensional energy surface in phase space). 
For regular states the local average probability density Il rises to large values on caustics at 
the boundaries of the classically allowed region in coordinate space, and $ exhibits strong 
anisotropic interference oscillations. For irregular states Il falls to zero (or in two dimen- 
sions stays constant) on ‘anticaustin’ at the boundary of the classically allowed region, and 
$ appears to be a Gaussian random function exhibiting more moderate interference 
oscillations which for ergodic classical motion are statistically isotropic with the autocor- 
relation of $ given by a Bessel function. 

1. Introduction 

In generic classical Hamiltonian bound systems with N (  3 2) degrees of freedom some 
orbits wind smoothly round N-dimensional tori in the 2N-dimensional phase space, 
and some orbits explore ( 2 N -  1)-dimensional regions of the energy ‘surface’ in a 
stochastic manner (Arnol’d and Avez 1968, Ford 1975, Whiteman 1977, Berry 1978). 
Percival (1973) took up an old idea of Einstein (1917) and suggested that in the 
semiclassical limit (i.e. as A + 0) there would be ‘regular’ and ‘irregular’ quantum states 
corresponding to these two sorts of classical motion. In the limiting case of a 
completely integrable system the whole phase space is filled with tori and all states are 
regular, and in the opposite limit of a completely ergodic system almost all orbits 
wander stochastically over the whole energy surface and all states are irregular. 
According to Percival regular and irregular states could be distinguished by their 
behaviour under perturbation; this distinction obviously involves the matrix elements 
between different states. 

Here I make conjectures about individual energy eigenstates. It appears that the 
nature of the wavefunction rL(q) is very different as A + O  for regular and irregular 
states. The main differences are in the behaviour near boundaries of classically 
allowed regions (9 2) and in the nature of the oscillations of $ ( q )  (9 3). These 
differences suggest simple ways in which a quantum state numerically computed or 
graphically displayed can be shown to be regular or irregular. 

The quantities to be calculated are local averages over coordinates q (= q1 . . . q N )  
of functions f(4) that depend on +(q),  denoted by fo and defined by 
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where 

lim A = 0 but lim (h/A) = 0. 
h-80 h-0 

The conditions on A ensure that the average f is taken over many oscillations of the 
wavefunction, since the scale of these oscillations is of order h. I shall study the local 
average probability density ll(q), namely 

and the autocorrelation function C(X; q )  of $(q),  namely 

The principal tool for this study is Wigner’s function Y(4, p) corresponding to the state 
$(4). This is defined as 

Detailed studies of the semiclassical behaviour of Y have been made by Berry (1977a) 
and Voros (1976, 1977). In terms of Y, the local average probability density is 

Wq) = I dP *Ir(q, P) (6) 

and the autocorrelation function is 

C(X; q ) =  dp eir.x’a q(q,  p ) / l l ( q ) .  (7 ) 
J 

For the present purposes it is sufficient to take for the averaged Wigner function 
the crudest classical approximation, namely the density in the classical phase space 4, p 
over the manifold explored by the classical orbit corresponding to the quantum state 4 
being considered. For an integrable system this is a torus, specified by the actions 
I# = ( I I  . . . IN) round the N irreducible cycles. Quantum conditions (reviewed by 
Percival 1977) select the I+ that can correspond to quantum states. Any point (4, p) in 
phase space can be specified by the actions f ( q ,  p) of the torus through (q, p) and the 
conjugate angle variables 8(q, p )  locating the position of (4, p) on this torus. Then the 
averaged Wigner function is (Berry 1977a): 

(Note that this involves an N-dimensional delta function.) 
For an ergodic system I assume that the relevant classical orbits are the typical 

ones, that pass close to all points on the energy surface corresponding to the energy E 
of the state 4. Then if H ( q , p )  denotes the classical Hamiltonian it is shown under 
reasonable assumptions by Voros (1976, 1977) that the averaged Wigner function is 

(Note that this involves only a one-dimensional delta function.) The ‘microcanonical’ 
assumption (9) differs radically from that made by Gutzwiller (1971), who considers 
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that the relevant orbits in this case are the individual unstable periodic trajectories. 
Although dense, these are of total measure zero and this makes it unlikely that they 
could support quantum states (any attempt to use orbits in the neighbourhood of the 
periodic trajectories will be frustrated by their instability). 

For a quasi-integrable system the existence of some tori is guaranteed by the ‘KAM’ 
theorem of Kolmogoroff (1954)’ Arnol’d (1963) and Moser (1962). Although these 
tori are distributed pathologically in phase space there are infinitely many of them 
near one with actions f, and this, taken together with a smoothing on scales small in 
comparison with R ,  is probably sufficient to give meaning to the function f ( q ,  p )  and 
hence to (8). There will be gaps in the system of tori; in these gaps motion is stochastic 
and fills a (2N - 1)-dimensional region smaller than the whole energy surface. Usually 
the orbits do not fill such stochastic regions uniformly but for simplicity I shall assume 
that they do. Then the averaged Wigner function will be given by (9) restricted to the 
region explored by the motion. 

The Hamiltonian will be taken as 

where m is the mass of the system and V ( q )  the potential in which it moves. This 
ensures that $ ( q )  can be considered real. The presence of a magnetic field or of 
anisotropy in the momentum terms introduces complications but no essential 
differences in the results. 

2. Caustics and anticaustics 

According to (6) the averaged probability density is the projection of the averaged 
Wigner function ‘down’ the p directions. The singularities of this projection are 
interesting because they show how n(q) behaves near the boundary of the classically 
allowed region in q space. 

For integrable systems the projections of tori are singular on the well known 
caustics where llI(q) becomes infinite. Explicitly, (6 )  and (8) give 

where the derivatives denote Jacobian determinants and pi (q )  is the ith intersection of 
a fibre through q with the torus I,  (there is always a finite number of these inter- 
sections). As q moves onto a caustic /dO/dql diverges as two or more intersections i 
coincide (figure 1). 

It is the presence of caustics that gives regular wavefunctions their striking and 
distinctive properties. The forms of the caustics in generic cases are governed by the 
catastrophe theory of Thom (1972) and Arnol’d (1975). This is because for the part of 
the torus for which 4 lies near the caustic it is possible to define a local generating 
function G(p; q )  by 

where q = 4 ( p )  is the equation of the torus near its ‘edge’ (figure 1). In terms of G the 
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Figure 1. Coordinates and momenta near ‘edge’ of a torus in phase space. 

gradient map 

defines the torus locally and the singularities of the map, where 

define the caustics in q space. This follows from the second term of (1 1) on realising 
that p varies smoothly with B when q is near a caustic (figure 1). (It is not possible to 
define a global generating function of the form (12)’ because (12) fails near caustics in 
momentum space where 4 ( p )  is not defined.) 

When N = 2 the possible catastrophes are fold lines and cusp points. If V(q)  is a 
simple potential well with circular symmetry, for example, there are no cusps and the 
caustic is two circular fold lines with radii determined by the libration points of the 
orbit. To see how such caustics are produced by projection it is simplest to visualise 
the tori in the three-dimensional energy surface 8 with coordinates 41, q 2  and the 
angle q5 made by p with the p1 axis; because of the periodicity in q5 the energy surface 
has the topology of a solid torus. Figure 2 shows 8 and also a two-dimensional torus 
corresponding to motion with constant angular momentum. 

Other forms of potential well can give rise to caustics with cusps, as illustrated by 
figure 3(e) which shows the caustic of an orbit computed by Marcus (private com- 
munication). One way this might arise can be introduced by first considering an 
isolated stable triangle orbit (figure 3(a)) on a non-circular billiard table (i.e. a 
potential zero for q 1 , q 2  inside a boundary and infinite outside). This will be sur- 
rounded by tori in 41, q 2 ,  q5 (Lazutkin 1973, Dvorin and Lazutkin 1973), one of which 
is shown in figure 3(6). The projection (caustic) is shown in figure 3(c); there are no 
cusps, and the non-generic triple junctions result from the discontinuity in V ( q )  at the 
boundary. The ‘generification’ of the torus (figure 3(d)) that results from softening 
V ( q )  at the boundary corresponds to pumping air into a flat tyre and on projection 
gives the cusped caustic of figure 3(e). 

For N > 2  the caustics can typically form higher catastrophes. In each case l l (q)  
rises to infinity at the caustic. For the fold, if x is normal distance from the caustic into 
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Figure 2. Energy ‘surface’ i? with coordinates (q l ,  q2, d)(& = 0 and q5 = 2.rr are identified). 
The torus corresponding to an orbit with constant angular momentum is shown, and the 
caustics which envelop its projection along 4. 

Figure 3. (a) Stable isolated closed orbit on billiard table; (b) torus in q l ,  42, q5 space (4 
perpendicular to paper) inhabited by nearby quasi-periodic orbit; ( c )  caustic resulting 
from projection of (b); (d) generification of torus in (b) resulting from softening potential 
at the boundary; (e) caustic resulting from projection of (d). 

the classically allowed region, the divergence has the form 

ITccRe x- ’” .  (15) 

At higher catastrophes the divergence is stronger. 
For non-zero )1 the divergences are softened by quantum effects and $ rises to a 

value of order )1-’ where p is the ‘singularity index’ defined by Arnol’d (1975). The 
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caustics are clothed by striking diffraction patterns (Berry 1976) characteristic of the 
particular catastrophe involved. 

This behaviour is very different from what happens in an ergodic system. There, 
equations (8), (9) and (10) give 

where 0 denotes the unit step function. When N > 2,  n(q) vanishes at the boundary 
E = V ( q )  of the classically allowed region. For N = 2 ,  n(q) is constant over the 
allowed region. In no case does ll diverge on the boundary (except in the trivial 
situation N = 1 when the system is integrable and ergodic and the boundary points are 
caustics of fold type). Therefore I shall call the boundaries of these irregular wave- 
functions anticaustics. 

In a quasi-integrable system the boundaries of the projections of stochastic regions 
corresponding to irregular states will also have anticaustics. As an example of this let 
N = 2 and consider a potential well perturbed from circularity. Surrounding each 
‘unperturbed’ torus that supported closed orbits there will be a gap between the tori of 
the perturbed system. Let one such gap span the angular momenta L1 to L2( > L 1 )  
and assume that the stochastic trajectories fill this gap uniformly. Then ‘(4) for a 
corresponding irregular quantum state will vary with radial coordinate 4 as 

Jl(q)cc[2‘d4/ 0 0 dppa(E- V(q)-PZ)O(L2-pq~in4)(3(pqsin4-L1) 2m 
02 

d 4  O(L2 - q[2m (E - V(q))]’/’  sin (6)@(4[2m (E - V ( q ) ) ] 1 / 2  sin 4 - L1) .  

(17) 
If q;, 4; are the inner libration radii for orbits with L1 and Lz ,  and q:, 4: are the 
corresponding outer libration radii, then 

( 4 < 4 l , P d )  1O 

I (4; < 4 < 4:) 
The form of this expression is sketched in figure 4; it can be seen that there are indeed 
anticaustics at the outer boundaries of the classically allowed region, where n(q) rises 
as (4 -q;)l” and falls as (4: -4)”’. 

3. Autocorrelation of the wavefunction 

The function C(X; q )  defined by (4) gives the scale and directionality of the pattern of 
oscillations of 1/1 near q. For an integrable system, (7) and (8) give (cf (1 1)) 
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Figure 4. Local average probability density arising from projection of phase space region 
with constant energy between two tori corresponding to motions with angular momenta 
L1 and L 2 .  

The wavevectors p i / h  in the ‘spectrum’ of (I, all have the same length [2m(E- 
V(q))]1/2/h but different directions. There is a finite number of such wavevectors, so 
C ( X )  is anisotropic. This anisotropy is most marked near a typical point on the 
caustic, where only two vectors (equal in magnitude and opposite in direction) contri- 
bute significantly to (19), giving rise to ‘Airy’ fringes parallel to the caustic. 

Again this behaviour is very different from what happens in the ergodic case, 
where there are infinitely may contributing p vectors and the spectrum of cc/ is 
continuous. When H is given by (lo), equations (7) and (9) give 

where n is the unit vector along p. This integral can be evaluated in terms of standard 
Bessel functions to give 

(For N = 2 and N = 3 this expression is simply J&) and sin [/5 respectively, where 5‘ 
is the argument of the Bessel function.) Just as in the integrable case all oscillations of 
(I, have the de Broglie wavelength h / [ 2 m ( E  - V(q))]1’2. Now, however, the oscil- 
lations near q are statistically isotropic, even close to the anticaustics. 

The autocorrelation function is not by itself sufficient to determine all statistical 
properties of cc/. However it is likely that for stochastic classical motion the phases of 
the different contributions p to cc/ are uncorrelated, because the orbit would ac- 
cumulate many action units h in its ‘unpredictable’ wanderings between passages 
through the neighbourhood of q. This would imply that cc/ is a Gaussian random 
function of q (Rice 1944, 1945, Longuet-Higgins 1956), whose spectrum at 4 is 
simply the local average of the Wigner function q ( q , p ) .  For ergodic motion .;it is 
given by (9) leading to the isotropic statistics described by (21), while for non-ergodic 
stochastic motion in a gap between KAM tori the contributing p are continuously 
distributed over a limited range of directions resulting in cc/ being a random wave 
whose statistics have some anisotropy. All statistical porperties of a Gaussian random 
function (probability distribution of cc/ and its derivatives, correlations between cc/ at 
two or more points, etc) are determined by n(q) and C(X; q) .  
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Of course t,b for an integrable system cannot be a Gaussian random function 
because its spectrum of wavevectors is discrete. However there exist in quasi-in- 
tegrable systems stable closed orbits of arbitrarily complicated topology, which will be 
surrounded by tori whose projections onto q will be crossed by many caustics not 
confined to the boundary of the classically allowed region. It is meaningful to think of 
the wave + in the presence of such caustics as having statistical properties but these 
will be highly non-Gaussian as I have explained elsewhere (Berry 1977b). 

4. Conclusions 

I have suggested that in the semiclassical limit quantum energy eigenstates separate 
into two universality classes distinguished by the morphology of their wavefunctions. 
States in Percival’s regular spectrum, associated with tori in classical phase space, have 
vivid patterns of regular interference fringes and violent fluctuations in intensity 
associated with caustics of the classical motion. In sharp contrast, states in Percival’s 
irregular spectrum, associated with stochastic motion in phase space, have random 
patterns of interference maxima and minima (statistically isotropic in the ergodic case) 
with more temperate intensity fluctuations of Gaussian random type and ‘anticaustics’ 
at boundaries of the classical motion. 

Closely analogous behaviour of wavefunctions is currently being studied in optics, 
in connection with Gaussian and non-Gaussian laser speckle patterns (Jakeman and 
Pusey 1975) and Gaussian and non-Gaussian twinkling of starlight (Jakeman ef a1 
1976, Berry 1977b). Gaussian wavefunctions arise when waves traverse a medium 
producing an irregular wavefront whose topography varies rapidly on a wavelength 
scale, and non-Gaussian wavefunctions (with caustics, etc) arise when the wavefront 
varies smoothly on a wavelength scale. In both the optical and the quantum cases the 
different behaviour of I,!J arises from the same cause: regular waves have underlying 
trajectories in phase space that are smoothly distributed on the scale of wavelength or 
h, while in irregular waves the trajectories show structure down to scales smaller than 
wavelength or h. Therefore h gives quantum oscillatory detail to regular wavefunc- 
tions but plays the completely different role of a quantum smoothing parameter in 
irregular wavefunctions. 

The regular and irregular behaviour described here should be obvious on 
computer-generated contour maps of eigenfunctions, provided these are ‘semiclassi- 
cal’ enough. For a system with two degrees of freedom this would probably require 
eigenfunctions with about a hundred extrema (ten nodes in each direction), whose 
computation using suitable basis functions would involve diagonalising 200 x 200 
matrices and is feasible with current technology. 

For a quasi-integrable system the semiclassical limit will be more complicated than 
I have described here, because there will be some states not clearly identifiable as 
regular or irregular, associated with stochastic regions of small measure resulting from 
the destruction of tori whose frequency ratios are high-order rational numbers. A 
description of the different regimes expected as h gets smaller is given by Berry 
(1977a, 1978). 
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